Literature‎ > ‎

A Multi-Level Mixture-of-Experts Framework for Pedestrian Classification

M. Enzweiler, D. M. Gavrila



Notwithstanding many years of progress, pedestrian recognition is still a difficult but important problem. We present a novel multi-level Mixture-of-Experts approach to combine information from multiple features and cues with the objective of improved pedestrian classification. On pose-level, shape cues based on Chamfer shape matching provide sample-dependent priors for a certain pedestrian view. On modality-level, we represent each data sample in terms of image intensity, (dense) depth and (dense) flow. On feature-level, we consider histograms of oriented gradients (HOG) and local binary patterns (LBP). Multilayer perceptrons (MLP) and linear support vector machines (linSVM) are used as expert classifiers.
Experiments are performed on a unique real-world multi-modality dataset captured from a moving vehicle in urban traffic. This dataset has been made public for research purposes. Our results show a significant performance boost of up to a factor of 42 in reduction of false positives at constant detection rates of our approach compared to a baseline intensity-only HOG/linSVM approach.